Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Stem Cell Reports ; 18(3): 688-705, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36764297

RESUMO

In addition to increasing ß-amyloid plaque deposition and tau tangle formation, inhibition of neurogenesis has recently been observed in Alzheimer's disease (AD). This study generated a cellular model that recapitulated neurogenesis defects observed in patients with AD, using induced pluripotent stem cell lines derived from sporadic and familial AD (AD iPSCs). AD iPSCs exhibited impaired neuron and oligodendrocyte generation when expression of several senescence markers was induced. Compound screening using these cellular models identified three drugs able to restore neurogenesis, and extensive morphological quantification revealed cell-line- and drug-type-dependent neuronal generation. We also found involvement of elevated Sma- and Mad-related protein 1/5/9 (SMAD1/5/9) phosphorylation and greater Runt-related transcription factor 2 (RUNX2) expression in neurogenesis defects in AD. Moreover, BMP4 was elevated in AD iPSC medium during neural differentiation and cerebrospinal fluid of patients with AD, suggesting a BMP4-SMAD1/5/9-RUNX2 signaling pathway contribution to neurogenesis defects in AD under senescence-related conditions.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Proteínas Smad
3.
Cell Struct Funct ; 48(1): 1-17, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36504093

RESUMO

The claudin family of membrane proteins is responsible for the backbone structure and function of tight junctions (TJs), which regulate the paracellular permeability of epithelia. It is thought that each claudin subtype has its own unique function and the combination of expressed subtypes determines the permeability property of each epithelium. However, many issues remain unsolved in regard to claudin functions, including the detailed functional differences between claudin subtypes and the effect of the combinations of specific claudin subtypes on the structure and function of TJs. To address these issues, it would be useful to have a way of reconstituting TJs containing only the claudin subtype(s) of interest in epithelial cells. In this study, we attempted to reconstitute TJs of individual claudin subtypes in TJ-deficient MDCK cells, designated as claudin quinKO cells, which were previously established from MDCK II cells by deleting the genes of claudin-1, -2, -3, -4, and -7. Exogenous expression of each of claudin-1, -2, -3, -4, and -7 in claudin quinKO cells resulted in the reconstitution of functional TJs. These TJs did not contain claudin-12 and -16, which are endogenously expressed in claudin quinKO cells. Furthermore, overexpression of neither claudin-12 nor claudin-16 resulted in the reconstitution of TJs, demonstrating the existence of claudin subtypes lacking TJ-forming activity in epithelial cells. Exogenous expression of the channel-forming claudin-2, -10a, -10b, and -15 reconstituted TJs with reported paracellular channel properties, demonstrating that these claudin subtypes form paracellular channels by themselves without interaction with other subtypes. Thus, the reconstitution of TJs in claudin quinKO cells is advantageous for further investigation of claudin functions.Key words: tight junction, claudin, paracellular permeability, epithelial barrier.


Assuntos
Claudinas , Junções Íntimas , Animais , Cães , Junções Íntimas/metabolismo , Claudina-1/genética , Claudina-1/metabolismo , Claudinas/genética , Claudinas/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismo , Células Madin Darby de Rim Canino
4.
iScience ; 24(7): 102724, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34337357

RESUMO

To infer a "live" protein network in single cells, we developed a novel Protein Localization and Modification-based Covariation Network (PLOM-CON) analysis method using a large set of quantitative data on the abundance (quantity), post-translational modification state (quality), and localization/morphological information of target proteins from microscope immunostained images. The generated network exhibited synchronized time-dependent behaviors of the target proteins to visualize how a live protein network develops or changes in cells under specific experimental conditions. As a proof of concept for PLOM-CON analysis, we applied this method to elucidate the role of actin scaffolds, in which actin fibers and signaling molecules accumulate and form membrane-associated protein condensates, in insulin signaling in rat hepatoma cells. We found that the actin scaffold in cells may function as a platform for glycogenesis and protein synthesis upon insulin stimulation.

5.
PLoS One ; 14(10): e0223300, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31574128

RESUMO

Tight junctions (TJs) are cellular junctions within the mammalian epithelial cell sheet that function as a physical barrier to molecular transport within the intercellular space. Dysregulation of TJs leads to various diseases. Tricellular TJs (tTJs), specialized structural variants of TJs, are formed by multiple transmembrane proteins (e.g., lipolysis-stimulated lipoprotein receptor [LSR] and tricellulin) within tricellular contacts in the mammalian epithelial cell sheet. However, the mechanism for recruiting LSR and tricellulin to tTJs is largely unknown. Previous studies have identified that tyrphostin 9, the dual inhibitor of Pyk2 (a nonreceptor tyrosine kinase) and receptor tyrosine kinase platelet-derived growth factor receptor (PDGFR), suppresses LSR and tricellulin recruitment to tTJs in EpH4 (a mouse mammary epithelial cell line) cells. In this study, we investigated the effect of Pyk2 inhibition on LSR and tricellulin localization to tTJs. Pyk2 inactivation by its specific inhibitor or repression by RNAi inhibited the localization of LSR and downstream tricellulin to tTJs without changing their expression level in EpH4 cells. Pyk2-dependent changes in subcellular LSR and tricellulin localization were independent of c-Jun N-terminal kinase (JNK) activation and expression. Additionally, Pyk2-dependent LSR phosphorylation at Tyr-237 was required for LSR and tricellulin localization to tTJs and decreased epithelial barrier function. Our findings indicated a novel mechanism by which Pyk2 regulates tTJ assembly and epithelial barrier function in the mammalian epithelial cell sheet.


Assuntos
Quinase 2 de Adesão Focal/metabolismo , Proteína 2 com Domínio MARVEL/metabolismo , Receptores de Lipoproteínas/metabolismo , Junções Íntimas/metabolismo , Epitélio , Quinase 2 de Adesão Focal/genética , Técnicas de Silenciamento de Genes , Humanos , RNA Interferente Pequeno/genética , Fatores de Transcrição
6.
Cell Signal ; 38: 212-222, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28743549

RESUMO

Apoptotic death of pancreatic ß cells is a major cause of type 2 diabetes mellitus (T2D) progression. Two isoforms of pyruvate kinase, PKM1 and PKM2, have been reported to participate in cell death in several cell types; however, little is known about their causal pathways in pancreatic ß-cell death. We examined whether the suppression of PKM1 or PKM2 affects endoplasmic reticulum (ER) stress-induced apoptosis in a pancreatic ß-cell line, MIN6, and Beta-TC-6 and found that knockdown of PKM1, but not of PKM2, leads to the induction of ER stress-induced apoptosis in these cells. We also investigated the mechanism by which PKM1 inhibits ER stress-induced apoptosis. We confirmed that PKM1 interacts with A-Raf, an upstream regulator of the MEK/ERK pathway, and that this interaction contributes to MEK1 phosphorylation by A-Raf. PKM1 knockdown suppresses the phosphorylation of MEK, ERK, and caspase-9 (Thr125), which is phosphorylated by the MEK/ERK pathway, thereby inhibiting the cleavage and activation of caspase-9. Thus, PKM1 knockdown activates the caspase-9/caspase-3 pathway under ER stress conditions and leads to apoptosis.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Estresse do Retículo Endoplasmático , Insulinoma/enzimologia , Insulinoma/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas A-raf/metabolismo , Hormônios Tireóideos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Butadienos/farmacologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Ácido Pirúvico/metabolismo , eIF-2 Quinase/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
7.
PLoS Pathog ; 11(3): e1004747, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25742138

RESUMO

Brucella species replicate within host cells in the form of endoplasmic reticulum (ER)-derived vacuoles. The mechanisms by which the bacteria are sequestered into such vacuoles and obtain a continuous membrane supply for their replication remain to be elucidated. In the present study, we provided several lines of evidence that demonstrate the mechanism by which B. abortus acquires the ER-derived membrane. First, during Brucella infection, the IRE1 pathway, but not the PERK and ATF6 pathways, of the unfolded protein response (UPR) was activated in a time-dependent manner, and the COPII vesicle components Sar1, Sec23, and Sec24D were upregulated. Second, a marked accretion of ER-derived vacuoles was observed around replicating bacteria using fluorescent microscopy and electron microscopy. Third, we identified a novel host factor, Yip1A, for the activation of the IRE1 pathway in response to both tunicamycin treatment and infection with B. abortus. We found that Yip1A is responsible for the phosphorylation of IRE1 through high-order assembly of Ire1 molecules at ER exit sites (ERES) under the UPR conditions. In Yip1A-knockdown cells, B. abortus failed to generate the ER-derived vacuoles, and remained in endosomal/lysosomal compartments. These results indicate that the activation of the IRE1 pathway and the subsequent formation of ER-derived vacuoles are critical for B. abortus to establish a safe replication niche, and that Yip1A is indispensable for these processes. Furthermore, we showed that the autophagy-related proteins Atg9 and WIPI1, but not DFCP1, were required for the biogenesis of the ER-derived membrane compartments.  On the basis of our findings, we propose a model for intracellular Brucella replication that exploits the host UPR and ER-derived vacuole formation machineries, both of which depend on Yip1A-mediated IRE1 activation.


Assuntos
Brucelose/imunologia , Endorribonucleases/imunologia , Interações Hospedeiro-Parasita/fisiologia , Proteínas Serina-Treonina Quinases/imunologia , Resposta a Proteínas não Dobradas/imunologia , Proteínas de Transporte Vesicular/imunologia , Western Blotting , Brucella abortus/fisiologia , Brucelose/patologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/microbiologia , Retículo Endoplasmático/patologia , Endorribonucleases/metabolismo , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Vacúolos/metabolismo , Vacúolos/microbiologia , Vacúolos/patologia , Proteínas de Transporte Vesicular/metabolismo , Replicação Viral/fisiologia
8.
Proc Natl Acad Sci U S A ; 112(10): E1067-76, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25713368

RESUMO

Increase in the concentration of plasma L-cysteine is closely associated with defective insulin secretion from pancreatic ß-cells, which results in type 2 diabetes (T2D). In this study, we investigated the effects of prolonged L-cysteine treatment on glucose-stimulated insulin secretion (GSIS) from mouse insulinoma 6 (MIN6) cells and from mouse pancreatic islets, and found that the treatment reversibly inhibited glucose-induced ATP production and resulting GSIS without affecting proinsulin and insulin synthesis. Comprehensive metabolic analyses using capillary electrophoresis time-of-flight mass spectrometry showed that prolonged L-cysteine treatment decreased the levels of pyruvate and its downstream metabolites. In addition, methyl pyruvate, a membrane-permeable form of pyruvate, rescued L-cysteine-induced inhibition of GSIS. Based on these results, we found that both in vitro and in MIN6 cells, L-cysteine specifically inhibited the activity of pyruvate kinase muscle isoform 2 (PKM2), an isoform of pyruvate kinases that catalyze the conversion of phosphoenolpyruvate to pyruvate. L-cysteine also induced PKM2 subunit dissociation (tetramers to dimers/monomers) in cells, which resulted in impaired glucose-induced ATP production for GSIS. DASA-10 (NCGC00181061, a substituted N,N'-diarylsulfonamide), a specific activator for PKM2, restored the tetramer formation and the activity of PKM2, glucose-induced ATP production, and biphasic insulin secretion in L-cysteine-treated cells. Collectively, our results demonstrate that impaired insulin secretion due to exposure to L-cysteine resulted from its direct binding and inactivation of PKM2 and suggest that PKM2 is a potential therapeutic target for T2D.


Assuntos
Trifosfato de Adenosina/biossíntese , Proteínas de Transporte/antagonistas & inibidores , Cisteína/farmacologia , Glucose/farmacologia , Insulina/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Animais , Linhagem Celular , Secreção de Insulina , Camundongos , Hormônios Tireóideos , Proteínas de Ligação a Hormônio da Tireoide
9.
Genes Cells ; 19(7): 565-81, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24889144

RESUMO

Tricellular tight junctions (tTJs) are specialized structural variants of tight junctions within tricellular contacts of an epithelial sheet and comprise several transmembrane proteins including lipolysis-stimulated lipoprotein receptor (angulin-1/LSR) and tricellulin. To elucidate the mechanism of its formation, we carried out stepwise screening of kinase inhibitors followed by RNAi screening to identify kinases that regulate intracellular localization of angulin-1/LSR to the tTJs using a fluorescence image-based screen. We found that the activity of JNK1 and JNK2, but not JNK3, was required for the exclusive localization of angulin-1/LSR at the tTJs. Based on a bioinformatics approach, we estimated the potential phosphorylation site of angulin-1/LSR by JNK1 to be serine 288 and experimentally confirmed that JNK1 directly phosphorylates angulin-1/LSR at this site. We found that JNK2 was also involved in the phosphorylation of angulin-1/LSR. Furthermore, GFP-tagged angulin-1/LSR(S288A), in which serine 288 was substituted by alanine, was observed to be dispersed to bicellular junctions, indicating that phosphorylation of Ser288 is crucial for the exclusive localization of angulin-1/LSR and tricellulin at tTJs. Our fluorescence image-based screening for kinases inhibitor or siRNAs combined with the phosphorylation site prediction could become a versatile and useful tool to elucidate the mechanisms underlying the maintenance of tTJs regulated by kinase networks.


Assuntos
Células Epiteliais/metabolismo , Proteína 2 com Domínio MARVEL/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Receptores de Lipoproteínas/metabolismo , Junções Íntimas/metabolismo , Animais , Antracenos/farmacologia , Apigenina/farmacologia , Linhagem Celular , Camundongos , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 9 Ativada por Mitógeno/antagonistas & inibidores , Nitrilas , Fosforilação , Serina/metabolismo , Tirfostinas/farmacologia
10.
PLoS One ; 7(8): e44127, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952896

RESUMO

Cell-based assay systems that can serve as cellular models of aberrant function in pathogenic organs would be novel and useful tools for screening drugs and clarifying the molecular mechanisms of various diseases. We constructed model cells that replicated the conditions in diabetic hepatocytes by using the cell resealing technique, which enables the exchange of cytosol. The plasma membrane of HeLa cells was permeabilized with the streptococcal toxin streptolysin O, and cytosol that had been prepared from wild-type or db/db diabetic mice was introduced into the resulting semi-intact cells. By resealing the plasma membrane by exposure to Ca(2+), we created WT or Db model cells, in which the cytosolic conditions replicated those of healthy or diabetic liver. Interestingly, phosphorylation of p38 MAPK was promoted, whereas the level of endosomal phosphatidylinositol-3-phosphate was decreased, in Db cells. We investigated several endocytic pathways in WT and Db cells, and found that retrograde endosome-to-Golgi transport was delayed in a p38 MAPK-dependent manner in Db cells. Furthermore, the degradation pathway of the EGF receptor from endosomes to lysosomes was enhanced in Db cells, and this did not depend on the activation of p38 MAPK. The disease model cell system should become a powerful tool for the detection of aberrant processes in cells under pathogenic conditions and for therapeutic applications.


Assuntos
Diabetes Mellitus/patologia , Endocitose/efeitos dos fármacos , Espaço Intracelular/metabolismo , Animais , Proteínas de Bactérias/farmacologia , Cloreto de Cálcio/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Toxina da Cólera/metabolismo , Dextranos/metabolismo , Diabetes Mellitus/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Endossomos/ultraestrutura , Receptores ErbB/metabolismo , Fluoresceínas/metabolismo , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Células HeLa , Humanos , Espaço Intracelular/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , Modelos Biológicos , Peso Molecular , Fosfatos de Fosfatidilinositol/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Estreptolisinas/farmacologia , Transferrina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Biochim Biophys Acta ; 1823(4): 861-75, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22326427

RESUMO

The ER-Golgi intermediate compartment (ERGIC) is an organelle through which cargo proteins pass and are being transferred by either anterograde or retrograde transport between the endoplasmic reticulum (ER) and the Golgi apparatus. We examined the effect of 80 different kinase inhibitors on ERGIC morphology and found that rottlerin, a PKCδ inhibitor, induced the dispersion of the perinuclear ERGIC into punctate structures. Rottlerin also delayed anterograde transport of vesicular stomatitis virus G protein (VSVG) from the ER to the Golgi and retrograde transport of cholera toxin from cell surface to the ER via the Golgi. RNA interference revealed that knockdown of PKCδ or ε resulted in the dispersion of the ERGIC, but unexpectedly did not inhibit VSVG and cholera toxin transport. We also found that rottlerin depolarized the mitochondrial membrane potential, as does carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP), an uncoupler, and demonstrated that a decrease in the intracellular adenosine triphosphate (ATP) levels by rottlerin might underlie the block in transports. These results suggest that PKCδ and ε specifically regulate the morphology of the ERGIC and that the maintenance of ERGIC structure is not necessarily required for anterograde and retrograde transports.


Assuntos
Compartimento Celular/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteína Quinase C-delta/metabolismo , Proteína Quinase C-épsilon/metabolismo , Acetofenonas/farmacologia , Benzopiranos/farmacologia , Bioensaio , Transporte Biológico/efeitos dos fármacos , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Toxina da Cólera/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/ultraestrutura , Ativadores de Enzimas/farmacologia , Técnicas de Silenciamento de Genes , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Glicoproteínas de Membrana/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...